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Solitary waves in a chain of beads under Hertz contact

C. Coste, E. Falcon, and S. Fauve
Laboratoire de Physique, Ecole Normale Superieure de Lyon, URA CNRS 1325, 46 Alle´e d’Italie,

69364 Lyon Cedex 07, France
~Received 7 April 1997; revised manuscript received 11 June 1997!

We study experimentally the propagation of high-amplitude compressional waves in a chain of beads in
contact, submitted or not to a small static force. In such a system, solitary waves have been theoretically
predicted by Nesterenko@J. Appl. Mech. Tech. Phys.~USSR! 5, 733 ~1984!#. We have built an impact
generator in order to create high-amplitude waves in the chain. We observe the propagation of isolated
nonlinear pulses, measure their velocity as a function of their maximum amplitude, for different applied static
forces, and record their shape. In all experiments, we find good agreement between our observations and the
theoretical predictions of the above reference, without usinganyadjustable parameter in the data analysis. We
also show that the velocity measurements taken at three different nonzero applied static forces all lie on a
single curve, when expressed in rescaled variables. The size of the pulses is typically one-tenth the total length
of the chain. All the measurements support the identification of these isolated nonlinear pulses with the solitary
waves predicted by Nesterenko.@S1063-651X~97!04211-6#

PACS number~s!: 03.40.Kf, 46.10.1z, 43.25.1y
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I. INTRODUCTION

Granular materials are widely spread in both geophys
and industrial contexts. Acoustic waves are frequently u
as nondestructive testing tools in the laboratory and
sometimes the only accessible way to get information in g
physical investigations. Thus the acoustic behavior of gra
lar materials has been widely investigated for a long ti
@1,2#.

The shape of the grains, the details of the contact
between adjacent grains, the geometry of the contact lat
and hence the dimensionality of the grain piling all affect t
propagation of sound in granular material. This variety
phenomena makes the problem difficult and many o
questions subsist~see@3# for a recent review!. Many experi-
mental investigations were concerned with the propaga
of seismic waves in materials submitted to very high pr
sures@4–6#, where all those problems are somewhat mix
Recent works on sound propagation in sand focus on g
metrical effects due to the disorder of the piling@7,8#. In this
paper we are concerned with the effect of the contact
between adjacent grains and the resulting nonlinear and
persive behaviors.

The interaction law between two adjacent elastic sphe
is an exact solution of linear elasticity, known as Hertz’s la
@9#. Because of purely geometrical effects, the relation
tween the forceF0 exerted on the spheres and the distance
approach of their centersd0 is nonlinear,F0}d0

3/2. As a
consequence of Hertz’s interaction law, the velocity of line
sound waves in one-dimensional systems scales asF0

1/6; this
classical result, experimentally demonstrated long ago@1,2#
~for more recent results see@10#!, does not seem to be ver
fied in higher dimensions because of geometrical effects@3#.
To get rid of such problems, a one-dimensional ordered s
tem such as a chain of identical elastic beads is a good
didate to study the nonlinear regime.

The nonlinear behavior of a chain of beads was origina
investigated with the help of numerical simulations, in ord
561063-651X/97/56~5!/6104~14!/$10.00
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to study the propagation ofshock wavesin the chain, for
several nonlinear interaction laws@11–13#. Nesterenko
@14,15# gave an analytical solution to the problem for Hertz
law. He showed that strong compressional waves, tha
with an amplitude much greater than the applied static for
may propagate as isolatedsolitary wavesin the chain. Later,
experimental evidence of the existence of such waves
given by Nesterenko and Lazaridi@16–18#. A strongly re-
lated problem, if not exactly identical, is the propagation
waves in a vertical column of grains subjected to gravi
which is crucial to the understanding of the details of t
whole column dynamics after an impact@19,20#.

In this paper we report quantitative experiments on n
linear wave propagation in a chain of identical elastic bea
allowing a comparison of the shape and the velocity of
waves with the theoretical predictions of Ref.@14#. We ob-
serve the propagation of nonlinear isolated pulses and a
tailed analysis, in which no free adjustable parameter is u
strongly supports their identification with the solitary wav
described by Nesterenko@14#. Our experimental setup allow
a systematic study of the waves in a large range of am
tudes for several applied static forces. This is in contrast w
the work of Refs.@16, 17#, in which the excitation of the
waves cannot be varied and only indirect velocity measu
ments were performed.

The paper is organized as follows. In Sec. II we revie
the calculations of Nesterenko for convenience and furt
reference. Section III A is devoted to the presentation of
experimental apparatus and Sec. III B to the analysis of
data and a comparison with the theoretical predictions. T
experimental results are presented in Sec. IV. We display
experimental shape of the nonlinear pulses in Sec. IV A fo
chain submitted to moderate static forces~29.4 and 167 N!.
In Sec. IV B we report on measurements of the velocity
propagation of the nonlinear pulses for three different
plied static forces~9.8, 29.4, and 167 N!. We show that when
the velocity is rescaled by thelinear sound velocity and the
maximum amplitude of the pulses is rescaled by the app
6104 © 1997 The American Physical Society
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56 6105SOLITARY WAVES IN A CHAIN OF BEADS UNDER . . .
static force, the previous measurements all lie on a sin
curve. Section IV C is devoted to the behavior of a chain
the absence of any static force because the theoretical s
of this case is somewhat singular. In Sec. IV D we disc
our results in the light of previous works@16–18#. Our con-
clusions are given in Sec. V.

II. THEORETICAL ANALYSIS

When two identical elastic spheres of radiusa are in con-
tact and submitted to astatic force F0 , the distance of ap-
proachd0 of their centers reads

d05
2~uF0!2/3

a1/3 with u[
3~12n2!

4E
, ~1!

where E is Young’s modulus andn Poisson’s ratio of the
bead material. This is an exact result oflinear elasticity,
known as Hertz’s solution@9#, and the nonlinear relationshi
betweend0 andF0 is a purely geometrical effect.

This solution is expected to remain valid when the for
F and hence the distance of approachd are both slowly
varying functions of time. The variations may be conside
as slow if every typical time scale involved in the motion
much greater than the time needed by a bulk longitud
acoustic wave to travel across the diameter of a bead. Fo
stainless-steel beads used in our experiments, which a
mm in diameter, this condition is fulfilled when all tim
scales are much greater than 2ms or all frequencies much
less than 500 kHz. Figures 6–8 and 13–15 below show
it is indeed the case in all our experiments. Moreover,
deformation of the beads in contact is strongly confined t
very small region near the contact point; it is thus possible
model a chain of identical beads in contact as a chain
point massesm54pra3/3, wherer is the density of each
bead, linked by nonlinear springs governed by Eq.~1!. The
dynamics of the chain, at sufficiently low frequencies, is th
described by the system of coupled nonlinear differen
equations

ün5
Aa/2

2mu
$@d02~un2un21!#3/22@d02~un112un!#3/2%,

~2!

whereun is the displacement of thenth bead from its equi-
librium position andün its second time derivative.

Two other approximations are hidden in Eq.~2!. First,
plastic deformation of the beads is neglected. The nonlin
waves are generated by impacting the first bead of the c
with a bead of maximum speed roughly 0.5 m/s~see Sec.
III A !. For steel beads, plastic deformation is negligible if t
relative speed of the impacting bodies is less than 1.3
@21#, so that this effect is actually not relevant to our expe
mental situation. Dissipation of the waves may also oc
because of the viscoelastic behavior of the bead mate
@22#, but this effect is presumably very small for steel bea
and we neglect it too. The validity of those approximations
checked experimentally,a posteriori. In the limit of very
small amplitude waves, for which the plastic effects are
relevant, the behavior of the chain is very well accounted
by the dissipationless model~2! @10#. In the strongly nonlin-
ear regime, there is very good agreement between the t
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retical predictions, which do not take dissipative phenome
into account, and the observations~see Sec. IV!.

The linear approximation of Eq.~2!, obtained in the limit
uun2un21u!d0 , gives for the linearized spring constant

k[S ]d0

]F0
D 21

5
3

4

~aF0!1/3

u2/3 ~3!

and we recover the well-known results for a chain of iden
cal point masses linked by identical linear springs. The d
persion relation between the wave numberq and the pulsa-
tion v is

v52Ak

m
usin~qa!u, ~4!

the cutoff frequencyf c of the chain reads

f c5
1

p
Ak

m
5

3

4p3/2

F0
1/6

u1/3a4/3r1/2, ~5!

and the sound velocitycs of the chain, not to be confuse
with the velocities of acoustic waves in the bulk material
the beads, is given by

cs[ lim
q→0

v

q
52aAk

m
5

3

2Ap

F0
1/6

u1/3a1/3r1/2. ~6!

The simple results~5! and ~6! are of course well known
~see, e.g.,@3#! and were recently tested for an actual chain
identical elastic beads@10#. They both have been confirme
experimentally with a great accuracy; this constitutes a c
experimental proof of the validity of the approximation
leading to Eq.~2!, which are otherwise rather uncontrolle
We will return to the same tests in the nonlinear regime
Sec. IV.

An interesting feature displayed by Eq.~6! is that without
any static forceF050, no linear acoustic waves propagate
the chain:cs50. Nesterenko@14# called this situation the
sonic vacuum. He also showed that strongly nonlinear wav
do propagate, even when the beads are just in contact, b
the absence of any static force. For convenience and fur
reference, we reproduce below his analysis, which may
found in @14#.

The strongly nonlinear limit corresponds touun2un21u
@d0 . In the long-wavelength approximation, that is, wh
the characteristic sizeL of the perturbation is much greate
than the radius of a bead, we may writeun(t)5u(x,t),
wherex represent the abscissa along the chain, and proc
to the development

un61~ t !5u~x62a,t !5u62aux12a2uxx6
4a3

3
uxxx

1
2a4

3
uxxxx1••• , ~7!

whereux5]u/]x. Inserting this development in Eq.~2!, we
get
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FIG. 1. ~a! Graph of the functionW(y), illustrating the mechanical analogy between the solutions of Eq.~11! and the motion of a point
particle of unit mass in a potentialW(y); the parameter of the graph isy`50.128, which meansym51.007. The motion of the particle with
energyE`50.011 corresponds to the solitary wave solution of Eq.~11!. Also shown is a particle of energyE50.005, corresponding to a
nonlinear periodic wave solution of Eq.~11!. ~b! Same as~a!, but the respective motions are shown in the phase plane (y,yh); the homoclinic
orbit ~solid line! corresponds to the solitary wave, the periodic orbit~dashed line! to the nonlinear periodic wave.~c! Shape of the solitary
wave corresponding to the motion of the particle with energyE` . ~d! Shape of the nonlinear periodic wave corresponding to the motio
the particle with energyE.
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2
~2ux!

1/2uxx1
a2

2
~2ux!

1/2uxxxx2
a2uxxuxxx

2~2ux!
1/2

2
a2

16

~uxx!
3

~2ux!
3/2G , 2ux.0, C2[

2a3

mu
, ~8!

where u is now the total displacement of the bead cente
from its position when no static force is applied. Equation~8!
is valid up to order (a/L)2. Looking for progressive waves
u(j[x2Vt), where the wave velocityV remains to be de-
termined, and settingc52uj , we transform Eq.~8! into

V2

C2 cj5
3

2
c1/2cj1

a2

2

~ccjj!j

c1/2 2
a2

16

cj
3

c3/2. ~9!

This equation may be integrated and put in dimensionle
form with the help of successive changes of variables

c5z4/5, z5S V

CD 5

y, j5A2

5
ah, ~10!

so that we finally get a particularly simple expression
s

yhh52
d

dy
W~y!

with

W~y!52 5
8 y8/51 1

2 y21 5
4 ~y`

4/52y`
6/5!y4/5, ~11!

wherey` is the value taken byy whenh→6`. The inte-
gration constant is such thatyhhu6`50, which means tha
the solution will have the form of a localized excitation. T
functionW(y) has a maximum fory5y` and a minimum for

y15$ 1
2 @12y`

2/51A~12y`
2/5!~113y`

2/5!#%5/2, ~12!

defined for 0<y`<1; moreover, y1>y` for 0<y`

<( 2
3 )5/2. Thus, wheny` belongs to this last range, the cur

W(y) has the shape displayed in Fig. 1~a!.
Equation ~11!, in an obvious mechanical analogy, d

scribes the motion of a particle of unit mass at positiony, in
the potentialW(y), during the timeh. If the particle is ini-
tially at the positiony` , with energyE` , it leaves its un-
stable equilibrium position up to positionym , defined by

W~ym!2W~y`!50, ~13!
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56 6107SOLITARY WAVES IN A CHAIN OF BEADS UNDER . . .
in an infinite time becausey` is the location of a maximum
of the potential, and then returns to positiony` again in an
infinite time; the corresponding trajectory in the phase pla
(y,yh) is a homoclinic orbit@see Fig. 1~b!#. Returning to our
wave problem, this describes the propagation of a solit
wave of amplitudey` at h→6` and of maximum ampli-
tudeym at h50, say; the shape of a typical wave profile
displayed in Fig. 1~c!. Also shown in Fig. 1~d! is a solution
of energyE,E` , represented by the dashed closed orbit
the phase plane, and corresponding to a nonlinear peri
wave.

Those conclusions are valid fory`.0 because the chang
of variables~10! is singular fory50. The solution fory`

50, which corresponds physically toF050, is a nonlinear
periodic wave train@14# with an analytic expression tha
reads, in the original variablesc andj,

c~j!5S 5

4

V2

C2 D 2

cos4
j

aA10
. ~14!

This solution is mathematically singular because it does
fulfill the inequality c52uj.0 @see ~8!#. On the other
hand, those nonlinear periodic waves aremodulationally
stable, as shown in Ref.@23#, so that they may be relevant t
the actual behavior of the chain. Experimentally, it see
that solitary waves exist also when no static force is app
to the chain~see@16,17# and Sec. IV C!. It is very unlikely
that a qualitative change suddenly appears at zero static f
because solitary waves exist at any infinitesimal app
static force. The shape of a solitary wave with a small sta
force is extremely similar to one arch of the nonlinear wa
~14!, as shown by Fig. 2. This behavior is confirmed
numerical simulations of Nesterenko and Lazaridi@17,18#,
who found the same properties for a wave of maximum a
plitude 200 N propagating either under a static force of 2
or in an uncompressed chain. Moreover, the wave velo
also tends continuously toward its zero static force limit,
shown in Sec. III B. We return to the theoretical status

FIG. 2. Evolution of the force~in N! as a function of time~in
ms! for a maximum amplitude of 100 N and, respectively, a sta
force of 1 N~solid line! @the wave profile is determined by Eq.~23!#
and no static force~dashed line! @the wave profile is determined b
Eq. ~28!#. The similarity of the two curves is striking; the choose
value of 1 N roughly corresponds to the available resolution on
static force~see Sec. III A!.
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those nonlinear periodic wave in Sec. III B and discuss th
experimental relevance in Sec. IV C.

III. MEASUREMENT METHODS

A. Experimental apparatus

The experimental apparatus is sketched in Fig. 3. T
system under study is a chain of 51 identical stainless-s
beads@Association Franc¸aise de Normalisation~AFNOR!
norm Z 100 C 17#, each 8 mm in diameter, with a toleranc
of 4 mm on the diameter and 2mm on the sphericity, and a
maximal roughness of 0.06mm. The physical properties o
the beads are summarized in Table I. The beads are
rounded by a framework of polytetrafluoroethylene~PTFE!;
this material is chosen because of its high density and
rigidity, leading to a velocity of 400 m/s for bulk acoust
waves, smaller than the velocity of the nonlinear waves
served in our experiments, which is greater th

c

e

FIG. 3. Sketch of the experimental apparatus~not to scale!. The
framework of PTFE consists of two parts, each one 30 mm high
mm wide and 400 mm long, with a straight channel of squa
cross section, 8.02-mm sides, milled in the lower part, that cont
the beads. A very small clearance of 2/100 mm is managed in
channel, so that the beads move freely along the axis but not in
perpendicular direction. Only two of the sensors perpendicula
the chain axis are shown as well as the one that is parallel to
chain axis; they are all piezoelectric quartz transducers with cha
amplifiers included hence the need of a stabilized electrical alim
tation. The impact generator is described in Fig. 4. Two mechan
devices, not represented here, ensure longitudinal~i.e., parallel to
the chain axis! displacement of both the dynamometer and the
bration exciter.

TABLE I. Relevant physical properties of the beads used in
chain; they are made of stainless steel, corresponding to
AFNOR norm Z 100 C 17.

Symbol Signification Value

a bead radius 4 mm62 mm
E Young’s modulus 2.2631011 N/m2

n Poisson’s ratio 0.3
r density 7650 kg/m3

u see Eq.~1! 3.02310212 m2/N
C see Eq.~8! 4.553103 m/s
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FIG. 4. ~a! General sketch of the impact generator. The impacting bead~see Table II for details! moves freely in a hole drilled in a
cylinder of duralumin, between the first bead of the chain and a piston mounted on a vibration exciter.~b! Cross section of the cylinder alon
the planeAA8 normal to its axis; this sketch emphasizes the inlet ensuring quick air evacuation, thus a great reduction of air frictio
bead. In the stationary regime, this apparatus send periodically, with the period of the piston motion,~almost! identical nonlinear pulses in
the chain.
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500 m/s~see Secs. IV B and IV C!. The observation of the
wave is thus not perturbed by a quicker wave propagatin
the surrounding medium. The static force is controlled b
dynamometer, and ranges from 0 to 170 N, with a precis
of 62 N.

Three force sensors~Dytran™, sensitivity 50 mV/LbF!
are held with their axis perpendicular to the chain axis, o
beads 6, 26, and 46, allowing the measurement of the w
flight time, but not of its shape. Indeed, those sensors
sensible to thetransversedeformation of a bead, perpendicu
lar to the direction of propagation of the wave, which
related in a rather complicated manner to the force exe
on the bead by its two neighbors, in the direction of prop
gation~see@24#!. Moreover, the total force is the~algebraic!
sum of the forces exerted on each side of the bead and
related to thegradient of the deformationc[2uj in the
continuous limit. The wave profile is obtained with the he
of a fourth force sensor~Dytran™, sensitivity 10 mV/LbF!
held at the end of the chain, with its own axis parallel to t
chain axis. In this configuration, the force measured by
sensor is related in a simple way to the deformation w
that propagates along the chain@see Eq.~20!#. As shown in
Fig. 3, the sensors are linked to a digital scope, suitable
the observation of nonrepetitive pulses; the signal may
transferred to an Apple™ computer for further analysis,
compare the experimental wave profile to the theoretical
~see Secs. IV A and IV C!.

The three sensors perpendicular to the chain axis
mounted on brass supports and we monitor the moun
torque with a torque wrench. The last sensor is centered
the chain axis, with its contact surface normal to this ax
and is mounted on a brass cylinder in the same manner a
other three. The cylinder is guided in order to allow t
longitudinal displacement of the sensor along the chain a
required by the settlement of the static force. The dynamo
eter may press on the brass cylinder, to exert a longitud
force on the chain, but the contact is not a permanent one
may be broken when no static force has to be applied on
chain. The relevant device, together with the one that allo
adjustment of the impact generator, is not shown in Fig.

In order to send high-amplitude compressional waves
the chain, we have built an impact generator sketched in
4. A bead, contained in a carefully adjusted bore drilled i
duralumin cylinder~an inlet for air evacuation is milled in
the cylinder in order to reduce air friction on the bea!,
moves freely between the first bead of the chain and a
in
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alumin piston held on a Bruel&Kjaer™ vibration excite
When the piston oscillates, the moving bead successiv
impacts the piston and the first bead of the chain; for pis
oscillation frequencies ranging from 70 to 110 Hz and a f
path of several millimeters for the moving bead, the succ
sive impacts occur in a regular fashion. Since the duration
an impact is very small~typically 50 ms; this duration is
nevertheless sufficient for the quasistatic approximation to
valid; cf. the beginning of Sec. II!, a great amount of mo-
mentum may be transferred, generating a maximum am
tude of the wave up to 1200 N~see Sec. IV!. In the stationary
regime, the period of successive impacts is the same as
one of the piston and is much greater than both the dura
of an impact~typically 50 ms! and the time taken by the
wave to travel along the chain, which is at least 1 ms in
worst case. The wave is thus completely damped betw
two successive impacts, mostly because of the very sm
reflection coefficient at the beginning of the chain, so th
two successive pulses do not interact. The amount of imp
sion transferred during the impact increases with the am
tude of the piston oscillations, their frequency, the length
the moving bead free path, the restitution coefficient for b
impacts experienced by the moving bead, and the densit
the moving bead material. Although in a strictly empiric
fashion, a proper choice of the parameters listed above
lows us to set the amplitude of the traveling pulse to a c
venient value. In most cases, the moving bead was mad
tungsten carbide and 8 mm in diameter~mass 4 g and a very
high restitution coefficient!, but we also used other impactin
beads listed in Table II.

TABLE II. Characteristics of the different impacting beads us
in our experiments. The materials are sorted in decreasing~only in
a qualitative sense! restitution coefficient order. The 8-mm tungste
carbide bead was the most frequently used one. This variet
impacting beads allows a large-amplitude range for the pulses
in the chain.

Impacting bead material Diameter~mm! Mass~g!

tungsten carbide 8 3.91
tungsten carbide 12 13.54
bronze 7.95 2.33
stainless steel 8 2.05
duralumin 8 0.71
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B. Data analysis

In our experiments we have access to the velocity of
wave, by performing time of flight measurements, and to
time evolution of the force experienced by the sensor hel
the end of the chain. The static force applied on the chai
set to a known value with the help of the dynamometer. T
actual value of the static force gives the distance of appro
d0 between two adjacent beads, with the help of Eq.~1!, so
that

c`5
d0

2a
5

u2/3

a4/3 F0
2/3. ~15!

Using Eq. ~10! we derive a relationship between the u
known quantitiesy` andV,

c`5S V

C D
4

y`
4/5, ~16!

where the reader is reminded that the constantC depends
only on the physical properties of the bead material. T
maximum amplitude of the solitary waveym is a solution of
Eq. ~13!. The definition ofW(y) is given by Eq.~11! and we
see that Eq.~13! is an algebraic equation of fifth order in th
unknown ym

2/5; ym5y` is of course one of the roots an
sincedW/dyuy`

50 it is a double root. We thus have to solv
only a third-order algebraic equation, and we obtain exp
itly @25# the functionym(y`). The unknowny` is thus given
by

Fym~y`!

y`
G4/5

5
cm

c`
, ~17!

wherecm is related toym by the change of variables~10!.
The measurement of the maximum force experienced by
force sensor at the end of the chain gives the experime
value of cm . The quantityc is the gradient of thetotal
displacement of the bead center and is the sum of the
stant value at equilibriumc`5d0/2a and a time varying par
c̃(t), which is the only part measured by the force sens
We have to take into account that the contact between
sensor and the last bead of the chain is between a plane
a sphere, so that@9#

dplane-sphere5
dsphere-sphere

21/3 . ~18!

Moreover, the contact surface is at a distancea from the
center of the bead. Letxw be the position of the sensor an
dw the distance of approach between the sensor and the
bead; we thus have

dw[u~xw2a!2u~xw!52aS ]u

]xD
xw

5ac. ~19!

From this equation we deduce the relationship between
signal given by the sensorF(t), of maximum valueFm , and
c̃(t), which reads
e
e
at
is
e
ch

e
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e
tal

n-

r.
e
nd

ast

e

c̃~ t !5
u2/3

a4/3 $@2F~ t !12F0#2/32~2F0!2/3%. ~20!

We thus get

cm

c`
5

~2Fm12F0!2/32~2F0!2/31F0
2/3

F0
2/3 . ~21!

The knowledge of the applied static forceF0 , together
with the measurement of the maximum forceFm experienced
by the sensor, gives the experimental value of the ra
cm /c` from Eq. ~21!. This value is inserted in Eq.~17!,
which is solved numerically to obtain the experimental va
of y` ; the numerical root finding is particularly simple he
because we know the existence of one and only one roo

the rangey`P@0,(2
3 )5/2# @see in Sec. II the discussion fo

lowing Eq.~12!#. We then deduce from Eq.~16! the valueV
of the velocity of the solitary wave predicted by the theo
which may be compared to the observed one~see Sec. IV B!.

Introducing thelinear sound velocitycs , given by Eq.
~6!, we may rewrite Eq.~16! as

V

cs
5A2

3
@y`~Fm /F0!#21/5, ~22!

where we have emphasized the fact that through Eqs.~21!
and~17!, y` is a function of the ratioFm /F0 only. Thus Eq.
~22! means that all the velocity measurements, taken at
ferent applied static forces, may be displayed on a sin
curve in properly rescaled variables. This is experimenta
demonstrated below in Fig. 12.

The theoretical shape of the wave, as measured by
force sensor, may be computed with the help of Eq.~21!,
which also gives the relationship betweenc(t)5c̃(t)1c`

andF(t), and Eq.~10!, and reads

F~ t !5
F0

2
H F S yS Vt

A2/5a
D

y`

D 4/5

21122/3G 3/2

22J ,

~23!

where the functiony(h) is obtained by a numerical integra
tion of Eq. ~11!. The wave shape predicted by Eq.~23! may
then be compared to the experimental observations; thi
done in Sec. IV A. Note that onceF0 andFm are known, the
theoretical shape of the wave and the theoretical value o
velocity are given without any adjustable parameter.

The case without static force is formally somewhat si
pler, in the sense that there is an analytical solution~14! to
Eq. ~11!. However, the physical situation is less clear, a
this case deserves particular discussion because the th
predicts propagation of nonlinearperiodic waves rather than
solitary waves like in the previous case. The analytic so
tion ~14!, together with the relation~20! for the particular
caseF050, gives an explicit relation between the velocity
the wave and its maximum amplitude,

VuF0505CS 4

5D 1/2S 2uFm

a2 D 1/6

. ~24!
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The scaling ofV with Fm may be understood in a ver
simple fashion. Let us drop in Eq.~8! the highest derivated
terms; we obtain

utt'
3

2
C2~2ux!

1/2uxx , ~25!

which is a wave equation with an amplitude-dependent w
velocity V;C(2ux)

1/4; using Hertz’s law~1!, we may write
(2ux);(uFm)2/3/a4/3, so that we get

V

C;S u

a2D 1/6

Fm
1/6. ~26!

In the general case, the velocity depends on both the s
forceF0 and the maximal amplitude of the waveFm , so that
this too simple expression has to be corrected to

V

C5S u

a2D 1/6

Fm
1/6f S F0

Fm
D , ~27!

where the functionf is only implicitly known, through Eqs.
~21!, ~17!, and ~16!. Formula ~24! states that f (0)

5( 4
5 )1/221/6, and the opposite limit is given by Eq.~6!, which

states, using the definition ofC in Eq. ~8!, that
limFm→0Fm

1/6f (F0 /Fm)5A3/2F0
1/6.

When no static force is applied on the chain, formula~26!
is exact up to a numerical constant. It expresses the fact
the Hertz interaction between adjacent beads is respon
for the propagation of the wave and is a common feature
all waves propagating in that type of medium. For examp
the same scaling exists for step waves@19# propagating up-
ward in a chain of beads in contact. TheFm

1/6 scaling is
clearly consistent with experimental observations in Fig.
which emphasize that the basic approximations leading
the nonlinear spring-point masses model of Eq.~8! are also
valid in the nonlinear regime.

We also stress that although the limitF0→0 is singular
for the shape of the wave, because the solitary wave solu
disappears, the velocity continuously tends toward exp

sion ~24!. Indeed, Eq.~11! implies ym(y`50)5( 5
4 )5/2, from

which we deduce the velocity as a function ofcm with Eq.
~10! and finally as a function ofFm with the help of Eq.~20!,
thus recovering Eq.~24!. Most probably Eq.~24! is a very
good approximation of the solitary wave velocity in the a
sence of a static force. The shape of the wave, as pred
by this theory, is accurately given by the shape of one arc
the nonlinear periodic wave~14! ~see Fig. 2 and the discus
sion at the end of Sec. II! and reads

F~ t !5Fm cos6S VuF050t

A10a
D . ~28!

IV. EXPERIMENTAL OBSERVATIONS

A. Shape of the wave for nonzero static force

Figure 5 shows a long time recording of the force exp
rienced by the sensor. The pulse corresponds to a comp
sional wave and exerts only a positive force on the sen
the oscillations appearing after the arrival of the pulse
e

tic

at
le
f
,

,
to

on
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-
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-
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r;
e

due to the resonant response of the sensor~its resonance
period is 13ms, not too far from the duration of the puls
which is about 50ms! and multiple reflections in the differ
ent parts of the apparatus at the end of the chain.

In Figs. 6–8 we show the experimental shape of the s
tary wave recorded by the force sensor at the end of the c
and compare it to the theoretical prediction derived from E
~23!. The static force is 29.4 N in the case of Figs. 6 and
and 167 N for Fig. 8; the available values of the nonline
parametercm /c` are thus much smaller in this case. Indee
the nonlinear parameter ranges from 3.7 in Fig. 6~a! to 17.0
in Fig. 7~d!, whereas it ranges from 2.5 in Fig. 8~a! to 5.2 in
Fig. 8~d!, for a range of maximal force experienced by t
sensor that is essentially the same for both applied st
forces. All the figures exhibit very good agreement with t
theory, although the arrival of the pulse seems sometim
slightly different from the theoretical expectations. It is im
portant to note that in this test of the theoryno adjustable
parameter is involved.

The typical duration of a pulse is about 30–40ms and its
velocity is about 1000 m/s; the typical length scale of a pu
is thus 3–4 cm or 4–5 beads. The long-wavelength appr
mation ~7! is thus fulfilled and the pulse propagates on
range much greater than its spatial extension, so that we
indeed call it a solitary wave. Another general conclusi
that may be drawn is that in all cases the duration of
pulse is much greater than the time taken by a bulk acou
wave to travel across a bead diameter, which is a neces
condition to apply Hertz’s theory to a nonstatic situation.

B. Velocity of the wave for nonzero static force

We give below experimental results on pulse propagat
in the chain for three different values of the applied sta
force: 9.861, 29.461, and 16761 N. An important pa-
rameter to consider is the ratiocm /c` , given by Eq.~21! in
term of the static and dynamic forces, which characterize

FIG. 5. The dotted curve displays a time recording of the fo
experienced by the sensor at the end of the chain during a long t
typically 10 times the duration of the first pulse. The abscissa is
time in ms, the ordinate the force in N; the experimental conditi
are a static force of 167 N and a nonlinear parametercm /c`

52.74. The first positive pulse is identical below with Nesterenk
@14# solitary wave; the solid line shows the theoretical shape o
solitary wave of the same amplitude, derived from Eq.~23!. Apart
from resonant oscillations of the sensor, we observe an isol
pulse.
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FIG. 6. Shape of four different solitary waves recorded at the end of the chain, for a static force of 29.7 N. Each graph disp
evolution of the force~in N! with time ~in ms!. The dots are experimental points, whereas the solid lines are the theoretical pred
derived from Eq.~23!. We give in each case the maximum amplitudeFm , the velocityV, and the nonlinear parametercm /c` of each wave:
~a! Fm5100 N, V5895 m/s,cm /c`53.7; ~b! Fm5138 N, V5921 m/s,cm /c`54.5; ~c! Fm5209 N, V5960 m/s,cm /c`55.8; and~d!
Fm5290 N, V5994 m/s,cm /c`57.2.
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nonlinearity of the wave. This ratio must be much grea
than 1 in order that Eq.~8! be valid; in our experiments, we
have

cm /c`P@1.9,17.0# for F059.8 N,

cm /c`P@1.4,16.5# for F0529.4 N, ~29!

cm /c`P@1.5,5.2# for F05167 N.

We obtain the wave velocity very simply from time-o
flight measurements between the four sensors available a
r

ng

the chain~see the details on the experimental apparatus
Sec. III A!. As we stressed before, the three force sens
that are held perpendicularly to the chain are well suited
such types of measurements, although they give no infor
tion about the actual shape of the wave. The theoretical va
of the wave velocity is derived as explained in Sec. III
with no free parameter once the applied static force and
maximal amplitude of the wave are both known.

We show in Figs. 9–11 the results of wave velocity me
surements for static forces of, respectively, 9.8, 29.7,
167 N. For the two smallest static forces, there is good ag
FIG. 7. Same as Fig. 6, with the same notations, but for greater values ofcm /c` . The respective characteristics of each pulse are~a!
Fm5503 N, V51060 m/s,cm /c`510.4; ~b! Fm5608 N, V51086 m/s,cm /c`511.8; ~c! Fm5705 N, V51106 m/s,cm /c`513.0; and
~d! Fm51060 N, V51168 m/s,cm /c`517.0.
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FIG. 8. Same as Fig. 6, with the same notations, but for a static force of 167 N. The respective characteristics of each puls~a!
Fm5274 N, V51131 m/s,cm /c`52.5; ~b! Fm5474 N, V51178 m/s,cm /c`53.3; ~c! Fm5842 N, V51239 m/s,cm /c`54.7; and~d!
Fm51005 N, V51260 m/s,cm /c`55.2.
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9.7
ment between the theoretical predictions and the meas
ments. In each case the nonlinear parameter ranges bet
the same limits, as shown by Eq.~29!. A small discrepancy
is shown by the measurements at 167 N; a possible expl
tion is an increase of energy transfer between the wave
the framework containing the beads, due to the high st
force. A wave arriving at the end of the chain has lost ene
and has thus propagated quicker than what is predicted f
its final amplitude; this interpretation is supported by t
good agreement of the experimental and theoretical shap
the wave at the same static force shown in Fig. 8. If
discrepancy was due to the smallness of the nonlinear pa
eter @see Eq.~29!#, it should have been exhibited in Fig.
too. The successive time-of-flight measurements along
chain do display some scattering of the data, hence the e

FIG. 9. Evolution of the wave velocity~in m/s! with the maxi-
mum amplitude of the wave~in N! for an applied force of 9.8 N.
The solid line is the theoretical prediction, derived from Eqs.~21!,
~17!, and~16!.
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bars of the graphs. The accuracy of the data is not suffic
to observe a systematic evolution of the velocity, whi
seems rather constant during the pulse propagation, eve
a static force of 167 N.

As we explained above, in the paragraph following E
~22!, the measurements of Figs. 9–11 may be displayed o
single curve when expressed in rescaled variablesV/cs and
Fm /F0 . This is demonstrated in Figs. 12~a! and 12~b!. Fig-
ure 12~a! shows that all the previous data lie on a sing
curve, when expressed in the variablesV/cs and Fm /F0 .
Figure 12~b! shows that, as predicted by Eq.~22!, V/cs is
indeed a linear function of@y`(Fm /F0)#21/5. A fit of the
proportionality constant gives 0.84, which compares w
with the expected valueA2/3'0.8165. Note also that Fig. 12
clearly shows that the nonlinear waves aresupersonic, a re-
sult predicted by Nesterenko@14#.

C. The case of zero static force

In order to be experimentally as close as possible to
case of zero static force, we proceed in the following ma

FIG. 10. Same as Fig. 9, but for an applied static force of 2
N.
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56 6113SOLITARY WAVES IN A CHAIN OF BEADS UNDER . . .
ner. We exert a static force on the chain in order to set
beads into contact and then we relax this force until the c
tact between the dynamometer and the brass cylinder
support the longitudinal force sensor is broken. There is
most no adhesion between the steel beads, but there ma
some uncontrolled friction with the walls of the channel co
taining the beads. We expect this friction to be small
smooth steel beads in contact with PTFE. Experimenta
the static force between two adjacent beads is certainly v
small, but we cannot be sure that it is strictly zero. In th
sense, the singularity of the zero static force case is rath
mathematical oddity than an actual physical effect.

When no static force is applied to the chain, the the
predicts the propagation of nonlinear periodic waves rat
than solitary waves as in the previous case. We have
corded the shape of the pulses arriving at the end of the c
in a large range of amplitudes, from 40 to 700 N. Expe
mentally, the comparison of the Figs. 6–8 with Figs. 13–
proves that there is no qualitative difference between
cases of zero and nonzero static force. Concerning the s
of the wave, as it is clearly demonstrated in Fig. 2, it is n
possible to distinguish a solitary wave in the limit of ve
small static force from an arch of the nonlinear period
wave. In Figs. 13–15 we compare the experimental shap
a pulse to one arch of a solution~28! with the same maxima
amplitude for different values of the maximal amplitude
the pulse. The agreement between the observed shape o
pulse and the theoretical prediction is striking, except for
smallest amplitude pulses displayed in Fig. 13. The dura
@26# of the pulse is about 30ms and its velocity is about 900
m/s. The spatial extension of the pulse is then about 30 m
roughly four beads, which is enough to ensure the valid
the long-wavelength approximation~7!. Indeed, one knows
from numerical simulations@27# that in discrete nonlinea
chains, the excitations are perfectly described by the cont
ous approximation if their size is greater than or equal to fi
particles. This length is also much less than the total len
of the chain, which means that the pulse has kept its sh
over a great distance, as a solitary wave should. The dif
ence from the previous case of Sec. IV A is that we are in
fully nonlinear regime, so that the development~8! is cer-
tainly correct.

As shown in Fig. 13, the agreement between the shap
the pulse and the theoretical prediction becomes poor fo
amplitude roughly less than 70 N. A possible interpretat

FIG. 11. Same as Figs. 9 and 10, but for an applied static fo
of 167 N.
e
-
at
l-
be

-
r
,
ry
t
r a

y
r

e-
in

-
5
e
pe
t

of

the
e
n

,
y

u-
e
th
pe
r-
e

of
n

n

for the discrepancy between the observed shape of the pu
and the predicted one could be that the friction of the be
on the walls causes a residual static forceF0* .0. But any
order of magnitude derived from Fig. 8, e.g., will give forF0*
a value much too high to be accepted. Another possibility
that, at low impact amplitude, it takes too much time for t
pulse to reach its asymptotic shape~i.e., the solitary wave
profile! from the initial wave profile. Unfortunately, there i
no theoretical information about the times taken by a giv
profile to reach its asymptotic shape and we are unable to
this interpretation. We stress that the amplitudes of
waves in those experiments are much smaller than in
experiments reported in Sec. IV A, in which this effect w
not observed.

From the pulse velocity measurements, we can first ve
that VuF050 scales asFm

1/6; Fig. 16 shows that this is indee

e

FIG. 12. ~a! Plot of the dimensionless ratioV/cs versus the
dimensionless quantityFm /F0 . The data are represented by circl
for a static force of 29.7 N, by triangles for a static force of 9.8
and by squares for a static force of 167 N. All the experimen
points lie on a single curve. The solid line is the curve co
3@y`(Fm /F0)#

21/5, where the experimental value of the constant
0.84. This is to be compared with the theoretical prediction~22! in
which const5A2/3'0.8165. ~b! Plot of the dimensionless ratio
V/cs versus the dimensionless quantity@y`(Fm /F0)#21/5, with the
same symbols as before. The data all lie on a singlelinear curve,
whose slope is found to be const50.84.
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FIG. 13. Shape of the pulse at the end of the chain, when no static force is applied to the chain. Each graph displays the evolu
force ~in N! with time ~in ms!. Dots are experimental values recorded by the digital scope and solid lines the theoretical prediction~28! for
a wave of the same maximal amplitude. The velocities and amplitudes of the pulses are, respectively,~a! V5629 m/s,Fm536.7 N; ~b!
V5659 m/s, Fm548.5 N; ~c! V5685 m/s, Fm561.4 N; and~d! V5725 m/s, Fm586.4 N. The pulses are of small amplitude and t
agreement with the theory is rather poor, except for the highest amplitude pulse displayed in~d!.
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the case. This result indicates that the Hertz interaction~1!,
in the quasistatic approximation~8!, fully accounts for the
propagation of the pulse in the nonlinear regime too@see the
discussion above Eq.~26!#. Like in the previous case, n
systematic evolution of the velocity with the travel time
the pulse is observed. In Fig. 17 we show that formula~24!
gives rather accurately the velocity of the pulse. This beh
ior is linked to the fact that the solitary wave velocity ten
continuously toward Eq.~24! in the F0→0 limit, as we
showed in Sec. III B.
v-

Even in the case of zero static force applied to the cha
we observe pulses that propagate over a great distance,
a constant velocity and shape, so that they may be ident
with solitary waves. Their velocity and shape are both in fa
agreement with the theoretical predictions of Nesteren
@14,15# if we forget that in this singular limit nonlinear pe
riodic waves are predicted rather than solitary waves.
course the impact generator is not well suited to gene
periodic waves and we cannot expect this type of wave
appear spontaneously. Within the precision of our meas
ely,

s very
FIG. 14. Same as Fig. 13, but for waves of greater amplitudes. The velocities and amplitudes of the pulses are, respectiv~a! V
5811 m/s,Fm5168.5 N; ~b! V5845 m/s,Fm5216.2 N; ~c! V5877 m/s,Fm5269.7 N; and~d! V5919 m/s,Fm5356.4 N. The negative
part of the force signal at the back of the pulses in~b!–~d! is the signature of the sensor resonance. The agreement with the theory i
satisfactory and much better than for the pulses of Fig. 13.



ctively,

the theory

56 6115SOLITARY WAVES IN A CHAIN OF BEADS UNDER . . .
FIG. 15. Same as Figs. 13 and 14, but for waves of greater amplitudes. The velocities and amplitudes of the pulses are, respe~a!
V5963 m/s, Fm5473.1 N; ~b! V51000 m/s,Fm5594.0 N; ~c! V51014 m/s,Fm5646.1 N; and~d! V51029 m/s,Fm5704.6 N. The
negative part of the force signal at the back of the pulse is the signature of the sensor resonance. As in Fig. 14, the agreement with
is very good.
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ments, the pulses are able to travel more than ten times
length while keeping their shape and velocity, which mea
that they are rather stable.

D. Discussion

In this section, we compare our results to the previo
experiments of Nesterenko and Lazaridi@16–18#. They have
observed the propagation of wave trains, built of several s
tary waves, in chains of steel beads with zero applied st
force. The initial impact was much more violent in the
experiments~the impacting mass was five times that of
bead in the chain and its velocity 1 m/s, more than tw
what we get in our experiments!, which explains that severa

FIG. 16. Graph of the wave velocity~in m/s! as a function of
Fm

1/6 ~in N1/6!, whereFm is the maximum amplitude of the wave
when no static force is applied on the chain; the relation is cle
linear, which simply states that the Hertz interaction between a
cent beads is responsible for wave propagation.
eir
s

s

li-
ic

e

solitary waves were generated. Moreover, they did not v
the intensity of the first impact. They have also conduc
similar experiments@17,18# with applied static forces of 2
and 20 N. An interesting result is that the pulses obser
with a static force of 2 N are almost identical to the one
observed without static compression of the chain; moreo
this behavior is confirmed by numerical simulations.

They recorded the arrival of the wave train at the end
the chain and compared its shape with numerical simulati
that includedthe impact on the first bead of the chainwith
the colliding mass used to generate the wave train. The
locity of the first pulse was not measured, but the time int
vals between successive pulses, together with their respe
amplitudes, compared well with the theoretical expectatio
for a short chain of 20 beads; the agreement was only qu
tative for a longer chain of 40 beads. In either cases,

ly
a-

FIG. 17. Evolution of the wave velocity~in m/s! with the maxi-
mum amplitude of the waveFm ~in N! for no applied static force.
The solid line is the theoretical prediction~24!.
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comparison between the shape of the pulses was only q
tative.

Our experimental setup allows the exploration of a la
range in the amplitude of the pulses, roughly from 1 to
and permits a systematic study of the shape and velocit
the waves as functions of their maximum amplitude. In o
experiments, the chain contains 51 beads, and we find ex
lent agreement with the theory for either the velocity of t
pulses or theircompleteshape. We do not confirm the stron
attenuation of the wave reported by Nesterenko and Laza
for the long chain of 40 beads.

A possible interpretation of this discrepancy is as follow
In their experiments, the beads are 4.75 mm in diame
contained in a quartz tube with an inside diameter of 5 m
The beads are thus allowed to move rather easily away f
the tube axis and presumably they lose a lot of energy
impacting the tube; this effect is reinforced if the length
the chain is increased. In our experiments, the beads are
tained in a channel drilled in a framework of PTFE, with
very small clearance of2

100 mm. Impacts on the walls ar
suppressed and, moreover, the acoustic coupling betw
steel and PTFE is much smaller than between steel
quartz.

V. CONCLUSIONS

We have conducted experiments on a chain of ident
beads in contact with either moderate static forces or z
static force applied to the chain. With the help of an imp
generator, we were able to generate high-amplitude pulse
the chain, that is, with a dynamical amplitude much high
than the static force.

With our experimental setup we were able to vary t
static force applied on the chain, together with the pul
amplitude. We added to the previous work of Nesteren
and Lazaridi@16–18# a systematic and quantitative study
the velocity and shape of the solitary waves.
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At the end of the chain, we recorded the time evolution
the force exerted on a dynamic force sensor and comp
this experimental shape of the pulse with the theoretical p
dictions of Nesterenko@14,15#. The agreement was ver
good when no static force was applied on the chain, exc
for excitations of very small amplitude; with a nonzero sta
force, excellent agreement was found between theore
predictions and experimental observations. In all cases
adjustable parameter was involved in the data analysis.

The velocity of the pulse seems to be accurately predic
by the theory, either with or without static force applied o
the chain. Velocity measurements for different nonzero
plied static forces may be displayed on a single curve w
proper rescaling of the variables. We stress that, as for
pulse shape, no adjustable parameter has been used.

In all cases, the typical size of the excitation is about fo
or five beads, which is sufficient to ensure the validity o
long-wavelength approximation. This size is also about o
tenth of the total length of the chain, which means that
pulses propagate over a large distance while keeping t
velocity and shape. This is strong experimental evidence
nonlinear solitary wave propagation in a chain of beads
Hertzian contact, even in the limit of zero applied sta
force.
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